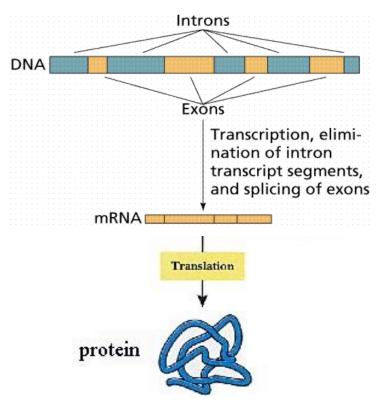
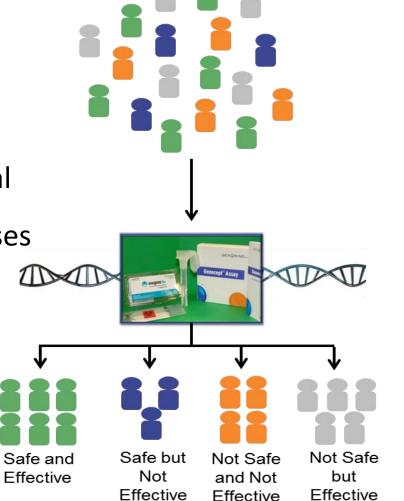

Genetic and Epigenetic Changes as Prospective Pain Targets

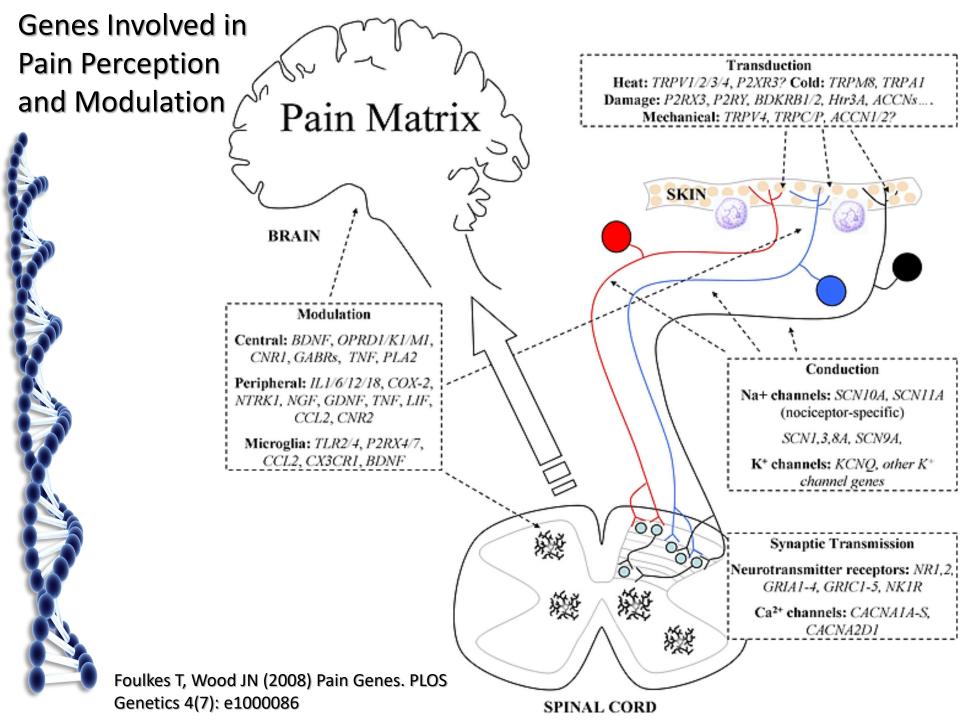
Gordana Supic, PhD, Associate Professor

Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia


Institute for Medical Research, Military Medical Academy, Belgrade, Serbia

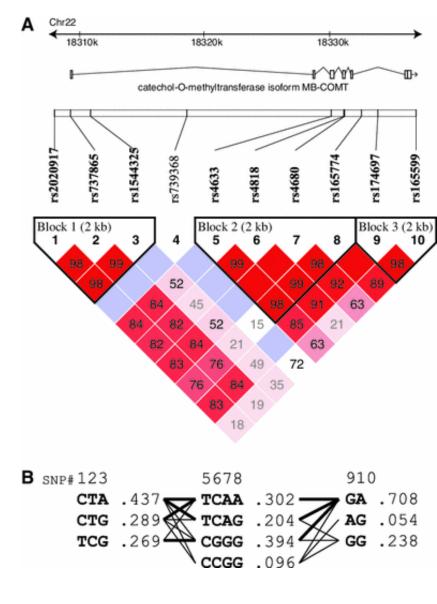
- Human Genome Project, HapMap Project, The 1000 Genomes Project...
- Genetic polymorphisms genome variations with a frequency of >1%
 - SNPs (single nucleotide polymorphisms)
 - ► 1/300bp, ≈ 15 million SNPs (The 1000 Genomes Project Consortium, Nature 526;68-74, 2015)
 - Coding SNPs: Changes in amino acid
 - ightarrow inter-individual variation in
 - physiological response
 - SNPs in TF binding sites, microRNA binding sites: ↑/↓ mRNA & protein


(drug target) expression or

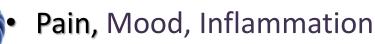

degradation

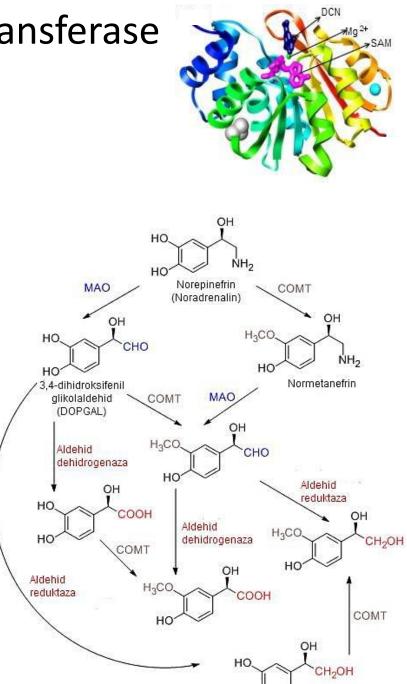
Clinical significance of SNPs

- Risk factors, predisposition to complex diseases 50,000-250,000
 SNPs (Genome Wide Association Studies, GWAS)
- Early Diagnosis
- Prognostic/Outcome Markers
- PHARMACOGENOMICS Individual
 - differences in the therapy responses
 - Personalized medicine

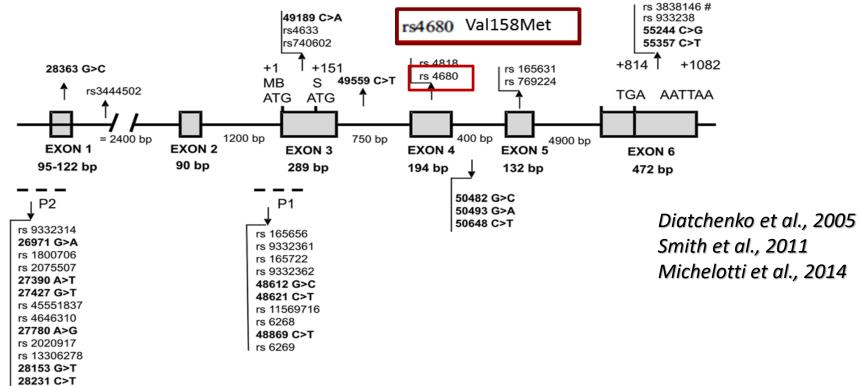


Pain Genetic vs. Pain Genomics


- SNPs in coding region
- SNPs in noncoding region
- Candidate Genes


- Haplotypes
- Epistasis (gene-gene interactions)

COMT: Catechol-O-Methyltransferase


- Metabolizes catecholamines in CNS and other tissues
 - Noradrenaline, adrenaline, dopamine
- Regulates neurotransmission breaks down catecholamine neurotransmitters, thereby stopping or reducing transmission of signals

HO

COMT: > 900 SNP variants

- Val158Met: widely studied
- Met/Met: 4-fold \downarrow in activity
- Met/Met (26%) individuals versus Val/Val (25%)
 - higher sensory & affective pain ratings
 - Lower morphine doses

Increased risk of chronic pain with Met individuals (fibromyalgia, TMD)

Genetic basis for individual variations in pain perception and the development of a chronic pain condition Diatchenko et al H

Diatchenko et al Human Mol Gen 14, 135, 2005

Luda Diatchenko^{1,8,*}, Gary D. Slade², Andrea G. Nackley¹, Konakporn Bhalang³, Asgeir Sigurdsson¹, Inna Belfer^{4,7}, David Goldman⁴, Ke Xu⁴, Svetlana A. Shabalina⁵, Dmitry Shagin⁶, Mitchell B. Max⁷, Sergei S. Makarov⁸ and William Maixner¹

Table 1. Variation in pain sensitivity (summed z-score) among tested SNPs and diplotypes of the COMT gene

SNPs	Genotype	Number of subjects	Genotypes frequencies	Mean (SD) z-score	$ANOVA^a$ R^2		
rs6269	G/G	31	0.153	-4.7 (9.1)	0.061		
	A/G	97	0.480	-0.7(10.5)			
	A/A	74	0.366	3.0 (10.7)			
rs4633	C/C	52	0.257	-2.0(10.5)	0.013		
	C/T	98	0.485	0.4 (10.9)			
	T/T	52	0.257	1.3 (10.2)			
rs4818	G/G	28	0.139	-5.2(8.0)	0.07		
	G/C	100	0.495	-0.9(10.5)			
	C/C	74	0.366	3.2 (10.7)			
rs4680 Val158Met	G/G	51	0.252	-2.1(10.3)	0.017		
	Δ/G	102	0.505	0.2 (10.9)			
	A/A	01	0.415	-0.2 (10.3)			
Haplotype	ATCA_ACCG	15	0.081	8.9 (11.4)	0.107		
combination	ATCA ATCA	49	0.263	1.7 (10.3)			
	ATCA_GCGG	80	0.430	-1.3(10.2)			
	GCGG_ACCG	14	0.075	1.5 (12.3)			
	GCGG_GCGG	28	0.151	-5.2 (8.0)			

- rs4648, rs4633, rs6269 relevant SNP for TMD
- Haplotypes: multiple SNPs in gene Differentiates less (GCGG) and high (ATCA/ACCG) pain sensitivity haplotype group
 TMD incidence higher in high pain sensitivity group (65%) than in low pain sensitivity haplotype group (28%)

Journal of Oral & Facial Pain and Headache 2016;30(4):302-10 Genetic Polymorphisms of Catechol-O-Methyltransferase: Association with Temporomandibular Disorders and Postoperative Pain Irena Mladenovic, Gordana Supic, Ruzica Kozomara, Slobodan Dodic, Nedeljka Ivkovic, Bojana Milicevic, Ivana Simic, Zvonko Magic

J Endod 2018;44:717-21

Pulp Sensitivity: Influence of Sex, Psychosocial Variables, COMT Gene, and Chronic Facial Pain Irena Mladenovic, Jelena Krunic, Gordana Supic, Ruzica Kozomara, Dejan Bokonjic, Nikola Stojanovic, Zvonko Magic

CC	OMT SNP	TMD	Controls	р	OR* (95% CI)	р
rs4680	wt (GG)	17	23	NS	Ref.	
	het (AG)	55	52		1.407 [0.670-2.952]	NS
	mut (AA)	18	17		1.427 [0.567-3.597]	NS
rs6269	wt (GG)	1	5 NS Ref		Ref.	
	het (AG)	57	60		4.316 [0.483-38.535]	0.190
	mut (AA)	32	27		5.320 [0.578-48.928]	0.140
rs165774	wt (GG)	30	47	0.006	Ref.	
	het (AG)	49	43	[#] 0.015	1.769 [0.949-3.298]	0.072
	mut (AA)	11	2		9.448 [1.913-46.652]	0.006
					[#] 2.088 [1.138-3.829]	[#] 0.017

*adjusted for age and sex ; #A allele carriers vs. GG genotype, (het/mut vs. wt)

COMT rs165774: significant risk factor; No association for rs4680 and rs6269 (Mladenovic et al, J Oral Facial Pain Headache 2016;30:302-10)

COMT rs165774 GG contribute to individual variation in electric and cold pulp sensitivity responses to electric stimuli and is associated with female sex (p < .01) (Mladenovic et al, J Endod 2018;44:717-21)

Epistasis of several genes in COMT pathway

IASP

PAIN[®] 155 (2014) 2390-2399

www.elsevier.com/locate/pain

Epistasis between polymorphisms in COMT, ESR1, and GCH1 influences COMT enzyme activity and pain

Shad B. Smith^a, Ilkka Reenilä^b, Pekka T. Männistö^b, Gary D. Slade^a, William Maixner^a, Luda Diatchenko^{a,c}, Andrea G. Nackley^{a,*}

GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence *Tegeder et al Nat Med 12, 1269, 2006*

- GCH1: GTP cyclohydrolase 1 cofactor for catecholamine synthesis
- ESR1: oestrogen receptor 1 regulates COMT gene expression
- GTP cyclohydrolase tetrahydrobiopterin (BH4) formation
- BH4: modulates peripheral neuropathic and inflammatory pain, cofactor in serotonin, catecholamine & NO production

COMT Met individuals : ↑ musculoskeletal pain

COMT Met individuals + GCH1 variant: increased pain threshold (\downarrow pain)

COMT Val individuals + ESR1 Variant: 1 pain

Mu Opioid Receptor OPRM1

- Endogenous opioids (endorphins and encephalins) reduce pain sensation
 - **OPRM1** Neuroendocrine Functions Stress response through hypothalamic-pituitary-adrenal axis

µ-Opioid Receptor Gene A118G Variants and Persistent

Pain Symptoms among Men and Women Experiencing

OPRM1 (A118G) Motor Vehicle Collision Linnstaedt et al J Pain 2015 In women with high pain prior to MVC^{b} (n = 97) In men with high pain prior to MVC° (n = 50) A118G allele A118G allele -1.727 0.507 0.001 1.742 0.914 0.057 Age 0.017 0.017 0.309 0.034 Age 0.065 0.031 Education 0.276 Education -0.182 0.168 -0...269 0.049 -0.530 Income -0.565 -0.840 < 0.001 Income 0.100 0.2240.656 Pain at the time of initial evaluation 0.226 0.093 0.015 Pain at the time of initial evaluation < 0.001 0.646 0.133

- OPRM1 A118G on persistent pain after motor vehicle accidents
 - Sex dependent differences
 - Women with G allele reduced pain after 6 weeks
- Men with G allele increased pain after 6 weeks

Citokines and pain

PAIN[®] 152 (2011) 2802-2812

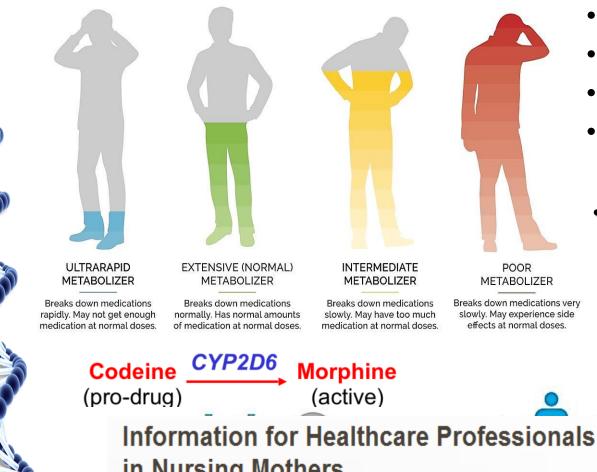
PAIN

www.elsevier.com/locate/pa

Cytokine biomarkers and chronic pain: Association of genes, transcription, and circulating proteins with temporomandibular disorders and widespread palpation tenderness

Gary D. Slade^a, Mathew S. Conrad^a, Luda Diatchenko^a, Naim U. Rashid^b, Sheng Zhong^a, Shad Smith^a, Jesse Rhodes^a, Alex Medvedev^b, Sergei Makarov^c, William Maixner^a, Andrea G. Nackley^{a,*}

- Cytokines contribute to TMD & widespread pain
- MCP-1 & IL-8 limit tissue damage; initiate remodeling
- Persistent [↑] MCP-1 & IL8: tissue pathology & nociceptor function changes
- Proinflammatory cytokines concentrations correlate with [↑] pain sensitivity
 - Significant epistasis between IL-8 SNPs and TGFB1 SNPs


CYP2D6 SNPs

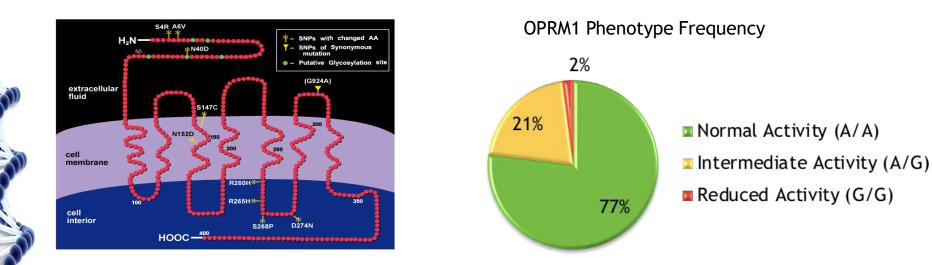
- Cytochrome P450 family crucial role in the metabolism of 70% of drugs - β-blockers, antipsychotics, antidepressants, cardiovascular drugs and opioids, codeine, tramadol, oxycodone;
- CYP2D6 >100 different SNPs
 - Extensive metabolizers (EMs) regular metabolic capacity; two active alleles *1,*2
 - 2. Intermediate metabolizers (IMs) intermediate metabolic capacity; heterozygous for a defective allele or two alleles with reduced activity Aa, AA - *10, *17, *29, *41
 - **3. Poor metabolizers (PMs)** lack a functional enzyme; two mutant alleles *aa**3, *4, *5, *6, *7, *8, *12
 - Ultra-rapid metabolizers (UMs) higher metabolic capacity than EM; multiple copies of functional alleles AAAA of the two active alleles *1,*2

Designation	Characteristic mutation(s)							
CYP2D6*1	Wild type							
CYP2D6*2	G ₁₇₄₉ C, C ₂₉₃₈ T, G ₄₂₆₈ C substitutions							
CYP2D6*3	A ₂₆₃₇ deletion							
CYP2D6*4	G ₁₉₃₄ A substitution							
CYP2D6*5	Gene deletion							
CYP2D6*6	T ₁₇₉₅ deletion							
CYP2D6*7	A ₃₀₂₃ C substitution							
CYP2D6*8	G ₁₈₄₆ T substitution							
CYP2D6*9	(A ₂₇₀₁ -A ₂₇₀₃) or (G ₂₇₀₂ -A ₂₇₀₄) deletion							
CYP2D6*10	C188T, G1749C, G4268C substitutions							
CYP2D6*11	G ₉₇₁ C substitution							
CYP2D6*12	G ₂₁₂ A substitution							
CYP2D6*13	Hybrid: 2D7 exon 1, 2D6 exons 2-9							
CYP2D6*14	G ₁₈₄₆ A substitution							
CYP2D6*15	T ₂₂₆ insertion							
CYP2D6*16	Hybrid: 2D7 exons 1-7, 2D6 exons 8-9							
$CYP2D6*1 \times 2$	Gene duplication							
$CYP2D6*2 \times 2$	Gene duplication							
$CYP2D6^*4 \times 2$	Gene duplication							

*3, *4, *5, *6, *41 more common in Caucasians *17 in Africans *10 in Asians

CYP2D6

EM - 70-90% Caucasians

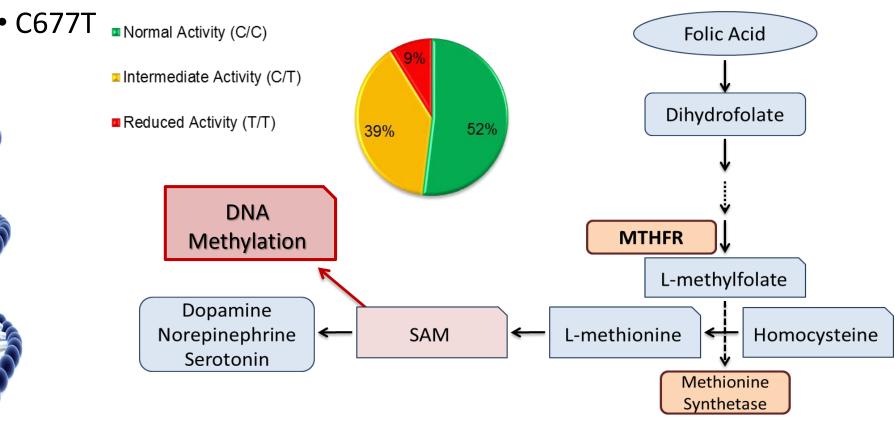

- IM 1-13% Caucasians
- PM 1-10% Caucasians
- UM 1-2% Caucasians
 - Crews K, et al. 2011. CPIC guidelines for codeine therapy in the context of CYP2D6 genotype. Clin Pharmacol Ther. 91(2):321-6.

Information for Healthcare Professionals: Use of Codeine Products in Nursing Mothers

Update: The issues described in this communication have been addressed in product labeling (see Drugs@FDA)

FDA Alert: [8/17/2007] FDA has important new information about a very rare, but serious, side effect in nursing infants whose mothers are taking codeine and are ultra-rapid metabolizers of codeine. These babies may be at increased risk for morphine overdose.

OPRM1 (A118G)

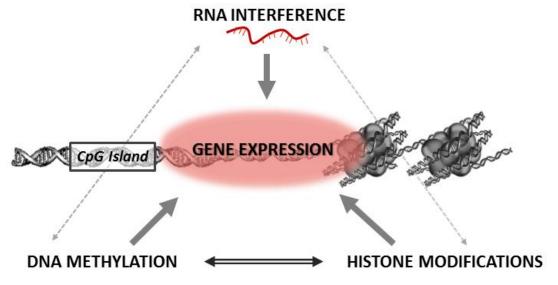

Reyes-Gibby, et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain 2007;130 (1-2)25-30.

• Patients who are carriers of the G allele for the A118G SNP show a reduced analgesic response with opioid medications such as morphine, codeine, and oxycodone

MTHFR

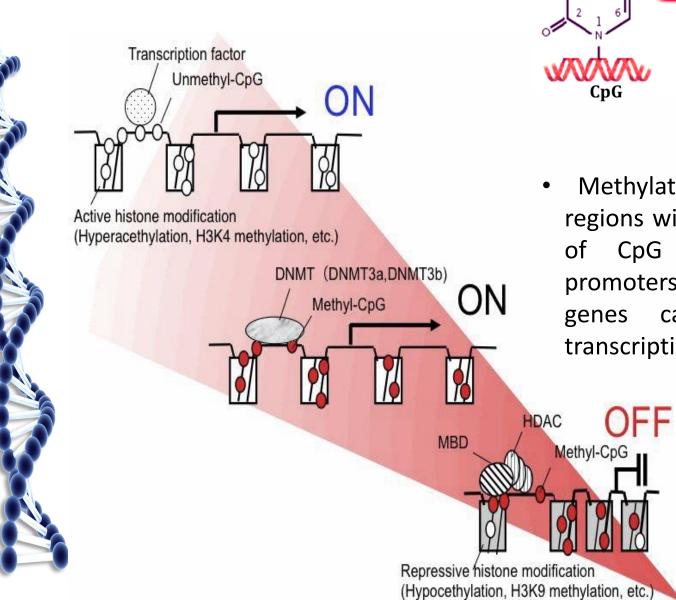
 Folate plays a critical role in the formation of SAM, an important precursor to neurotransmitter synthesis

Methylenetetrahydrofolate reductase (MTHFR) SNPs - A1298C



- Migraine Christensen et al, Cephalalgia 2016, 36, 624–639
- Chronic pain Zorina-Lichtenwalter et al. Neuroscience 2016, 338, 36–62
- Fibromialgia Inanir et al, Gene 2015, 564, 188–192.

EPIGENETICS – heritableand potentially reversible changes in gene expression that occur without a change in the DNA sequence.


Mechanisms of epigenetic control:

- DNA Methylation
- Histone modifications: Histone variants, "histone code"
- RNA silencing: Regulatory non-coding RNAs (siRNA, miRNA, ...)

Supic et al, 2016

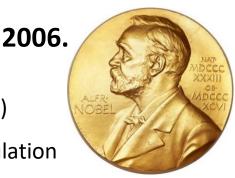
DNA Methylation

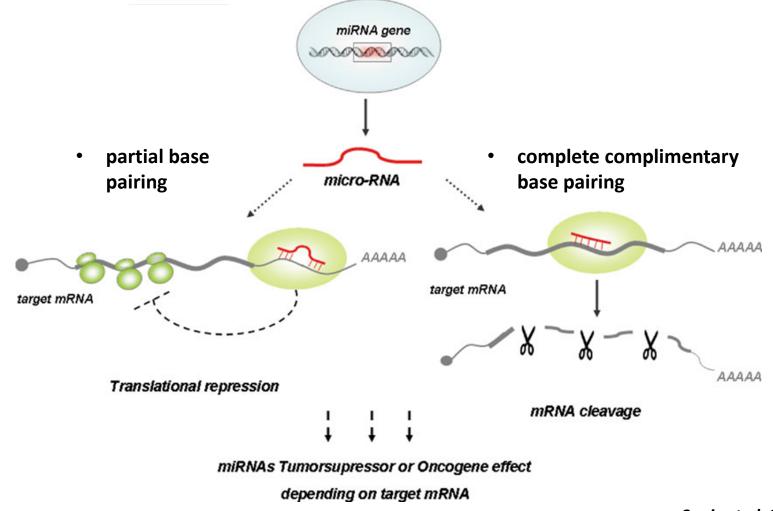

Cytosine 5-Methylcytosine NH_2 NH_2 NH_2 DNMT NH_2 NH_2 NH_2 CPG CpG CpG CpG CpG CpG CpG Ch_3 CpG

 Methylation of CpG islands, regions with high concentration of CpG sites, within the promoters of more than 60% of genes can lead to their transcriptional silencing.

Histone modifications - Histone code

- **Histones** dynamic role in the regulation of chromatin and gene activity
- Acetylation, methylation, phosphorylation, ubiquitination...
 - Histone acetylation neutralizes the positive charge on histone tails, chromatin is accessible to the transcriptional factors. Histone deacetylases (HDAC) deacetylize lysine (K) in histones, nucleosomes are tightly compacted.

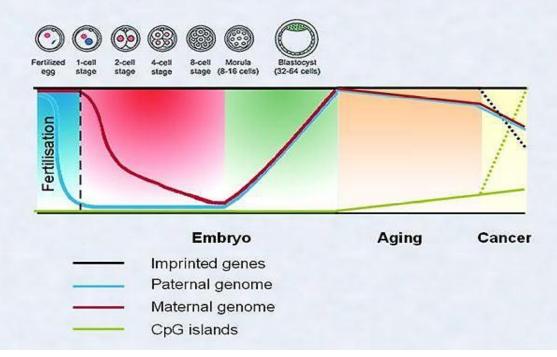

Histone methylation influences the chemical characteristics of histones and their affinity to DNA

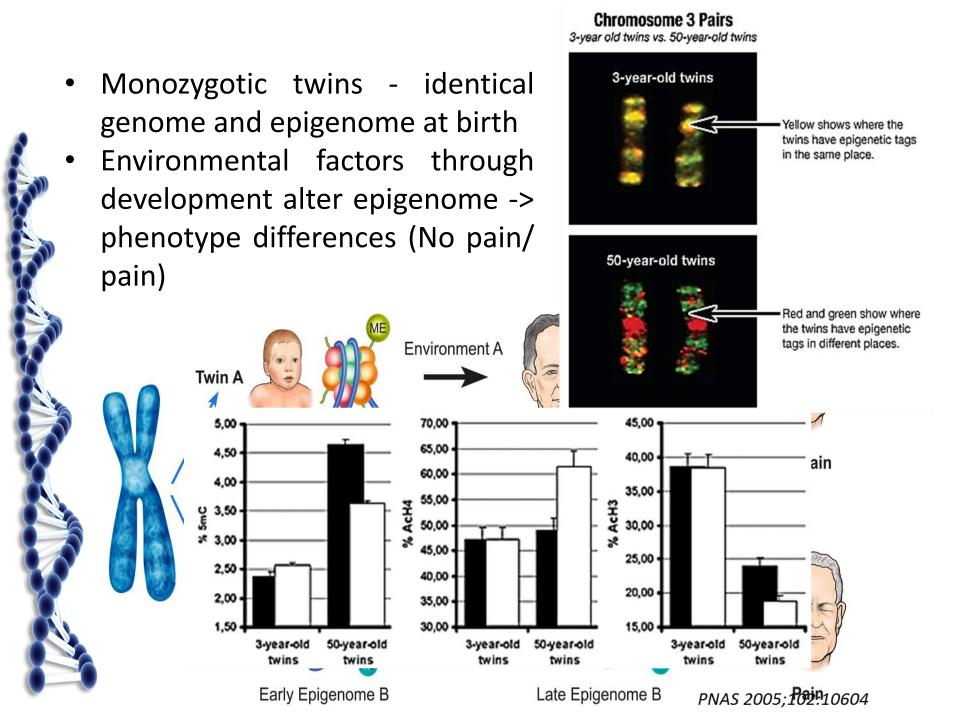


Modified from Vertino, Stewart, 2003

RNA interference – RNA silencing

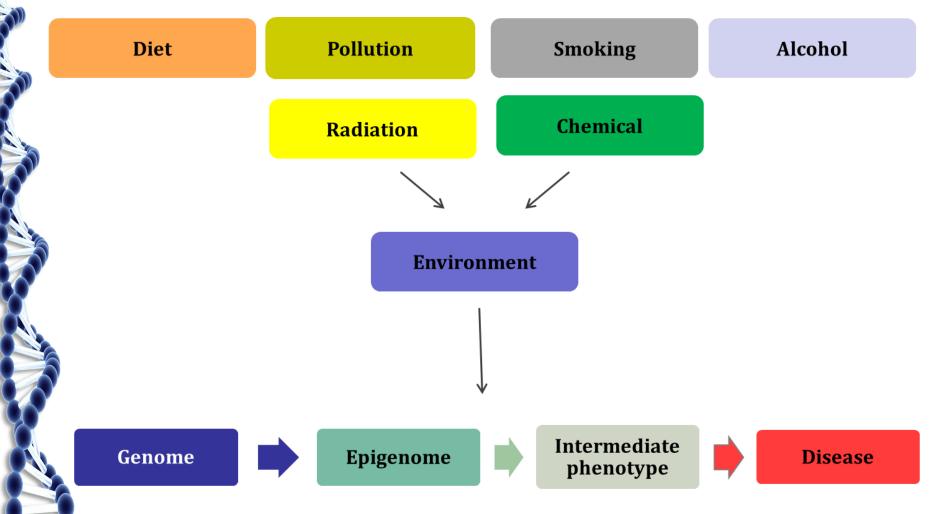
- Non-coding RNAs (siRNA, miRNA, stRNA, shRNA, ALU, LTR, LINE)
- Micro-RNAs (miRNAs) >2000, 18-22 nt, posttranscriptional regulation



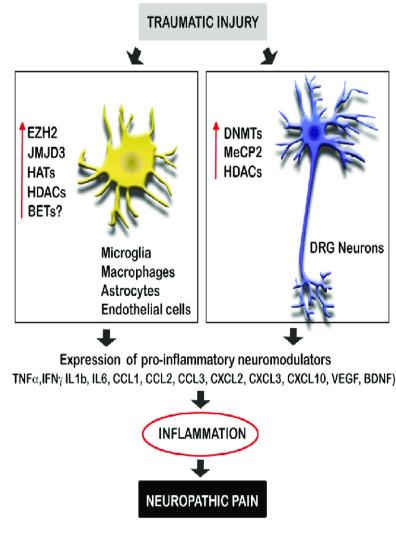

Supic et al, 2013

The Roles of Epigenetic Programming in Normal Cells

- Cellular Differentiation
- Maintaining of genome stability
- Embryonic development
- Genomic imprinting
- X -inactivation
- Aging
- Cancer
- PAIN ...


Reprogramming the DNA methylome

Environment influence epigenetic changes


• Epigenetics provides the missing link on how the environment can change the cell without causing mutation to cause disease

Epigenetics and the Transition from Acute to
Chronic PainPain Medicine 2012; 13: 1474–1490

Thomas Buchheit, MD, Thomas Van de Ven, MD, PhD, and Andrew Shaw, MB, FRCA, FCCM

- Inflammatory cytokines under epigenetic control
- Glucocorticoid receptor (affects pain sensitivity and inflammation)
 modulated through DNA methylation
- Glutamic acid decarboxylase (pain regulatory enzyme) downregulated by hypoacetylation in inflammatory and nerve injury pain states
 - Opioid receptor regulated by HDAC, with implications for terapeutic pain modulation with HDAC inhibitors – demonstrated in animal models

Differential methylation of the TRPA1 promoter in pain sensitivity NATURE COMMUNICATIONS | 5:2978 | DOI: 10.1038, 2014

J.T. Bell^{1,2}, A.K. Loomis³, L.M. Butcher⁴, F. Gao⁵, B. Zhang³, C.L. Hyde³, J. Sun⁵, H. Wu⁵, K. Ward¹, J. Harris¹, S. Scollen⁶, M.N. Davies^{1,7}, L.C. Schalkwyk⁷, J. Mill^{7,8}, The MuTHER Consortium^{*}, F.M.K. Williams¹, N. Li⁵, P. Deloukas^{9,10,11}, S. Beck⁴, S.B. McMahon¹², J. Wang^{5,11,13,14}, S.L. John³, T.D. Spector¹,

TRPA1: ligand-gated ion channel - sensor for pain, cold, stretch; chemicals: mustard, wasabi, horse radish

- 50 monozygotic twins 50 controls
- Heat pain: low vs high sensitivity
- Methylation rate TRPA1 related to pain sensitivity

	Table 1 Meta-analysis DMRs for pain sensitivity at FDR 5%.														
					Discovery (n = 25 MZ pairs)*			Follow-up (n = 50 individuals)*			Meta-analysis*				
	Chr	DMR	Nearest gene (kb) [†]	% Repeat [‡]	β	s.e. (β)	P- value	MZ diff (r)§	β	s.e. (β)	P- value	R ²	β	s.e. (β)	P -value
0	8	73,151,000-	TRPA1 (0.1)	0.00	- 0.23	0.04	2.6×10 ⁻⁶	- 0.68	- 0.40	0.07	1.3 × 10 ⁻⁶	0.39	- 0.28	0.04	1.2×10 ⁻¹³

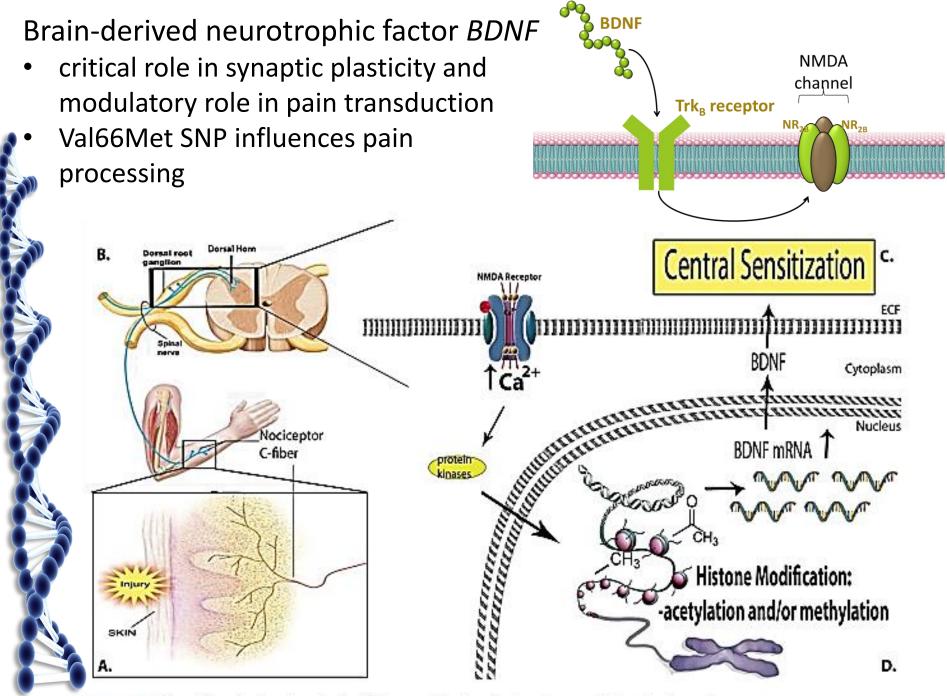
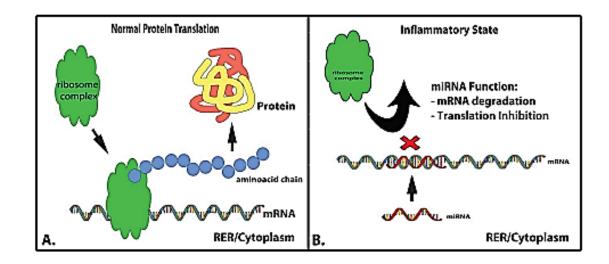
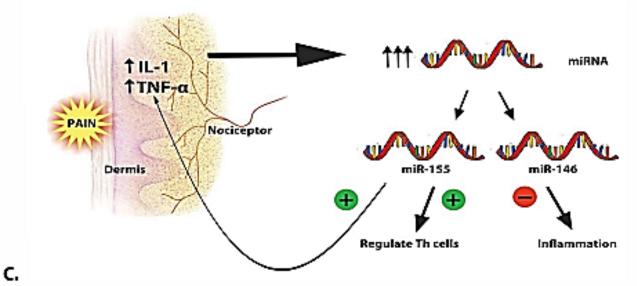
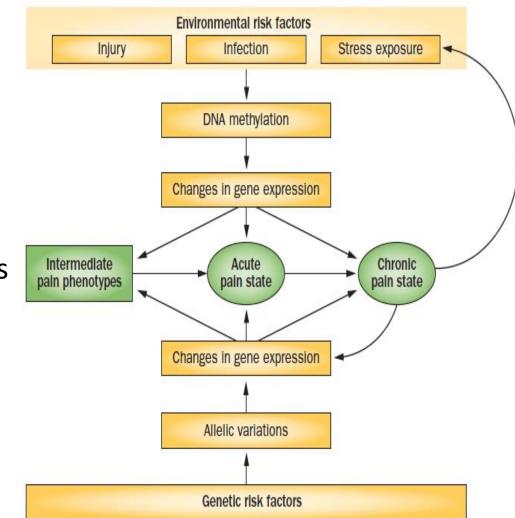




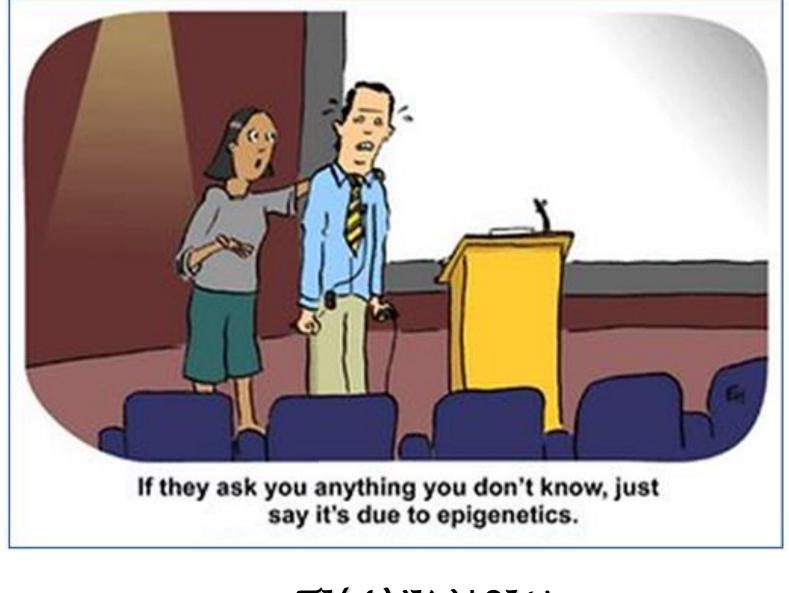
Figure 3 Epigenetic pain alteration due to Histone modification in dorsal horn and dorsal root ganglion

 RNA interference target TRPV1 channels, BDNF, cytokines such as TNF-α, and painrelated cation channels (P2X3)

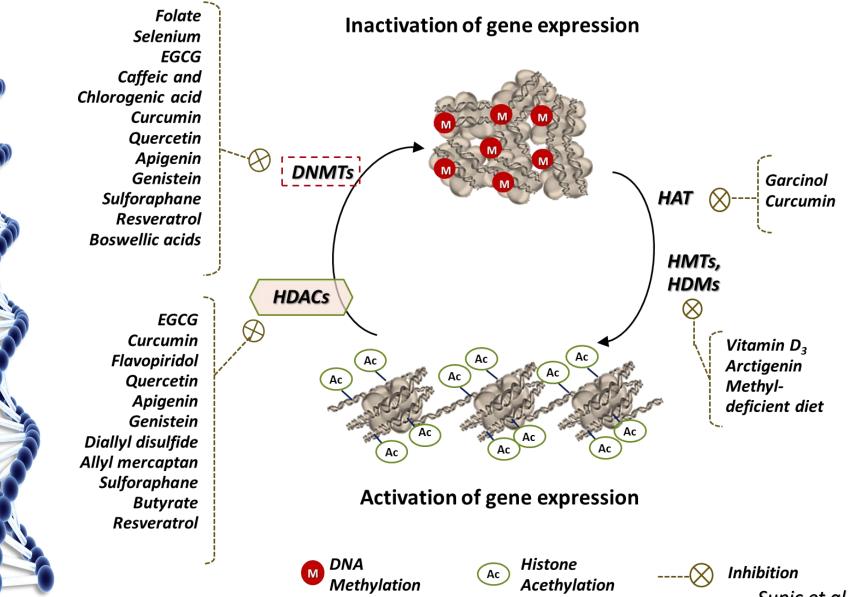
Figure 4



Epigenetic control of miRNA in an inflammatory state. A) Normal protein translation. B) Function of miRNA: mRNA degradation and inhibition of protein translation. C) Functions of miR-146 and miR-155 in rheumatoid arthritis: miR-146 decreases inflammation, whereas miR-155 modifies Th cell response and induces TNF- α mediated


arthritis; miR-146 decreases inflammation, whereas miR-155 modifies Th cell response and induces TNF-α mediated nociception. Abbreviations: RER-Rough Endoplasmatic Reticulum; II-1-Interleukin 1; TNF-α-Tumor necrosis factor α.

- Genetic and environment interactions contribute to pain development and response to treatment
 - Epigenetics
 - Epigenetically Active Drugs (TSA enhances μ-opioid receptor transcription, SAHA reduces the nociceptive response in animals)


Diatchenko et al; Nat Rev Rheumatol 9, 340, 2013

Bioactive dietary components

THANK YOU!

• Bioactive compounds with epigenetic effect on gene expression

Supic et al, 2016